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Convergence properties of various finite-difference schemes for solving the equations 
of motion for recirculating flow of an incompressible fluid in a square 2-D cavity are 
examined at Reynolds numbers up to 104. Stream function-vorticity forms of the governing 
equations are approximated by means of second-order-correct central-difference approxi- 
mations and solved by means of alternating-direction-implicit iteration. The effects of 
grid-altering coordinate transformations, spatially nonunifom ADI relaxation parameters, 
and order-correct treatments of the vorticity boundary condition on such issues as accuracy 
and rate of convergence are established. Differences in results occurring with upwind 
versus central differencing at high Reynolds numbers are explained with consideration in 
particular for the sizes of the secondary vortices. Formulation of the advective terms in 
convective, divergence, and Arakawa-conservative forms is discussed in terms of global 
conservation of vorticity, kinetic energy, and square vorticity. 

INTRODUCTION 

The development of improved methods for solving the Navier-Stokes equations 
governing recirculating flows within closed streamlines has been a subject of concern 
to computational physicists for nearly two decades. Of particular concern are the 
difficulties associated with the nonlinear advective terms as the Reynolds number 
becomes large, which have frustrated efforts to obtain computationally stable and 
numerically accurate solutions at reasonable cost. 

The magnitude of the difficulty is suggested by the fact that fully converged second- 
order-correct finite-difference solutions for the simple model problem of shear- 
driven flow in a square 2-D cavity have yet to be obtained at other than modest 
Reynolds numbers [l-5]. Although stable “solutions” have been generated at much 
larger Reynolds numbers [3, 6-81 using upwind differencing of the advective terms 
[9], it has been shown [4, lo] and will be shown later in this paper that the results 
are likely invalid owing to first-order false diffusion effects. These effects can to some 
extent be alleviated by employing higher-order-correct upwind differencing [l 11; 
however, this approach introduces added complexity in relaxing the nonlinear 
algebraic problem by means of, for example, alternating-direction-implicit (ADJ) 
methods [12]. 
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As might be expected, other computational approaches for solving the basic 
problem are being explored. For example, Chorin [13] introduced a method for 
solving the Navier-Stokes equations at high Reynolds numbers wherein vortex “blobs” 
are assigned over the flow field and then permitted to disperse according to a combina- 
tion of deterministic guidelines and computer-generated pseudorandom numbers 
(random walks). Although application to transverse flow across an infinitely long 
cylinder is in good agreement with experiment for 500 G Re B 5000, the method is not 
applicable at low Reynolds numbers and has proven troublesome at very high Reynolds 
numbers owing to noise induced by oscillating vortices in boundary layer regions. The 
method has, however, been applied to the model 2-D cavity problem with some 
success [14]. 

In opposition to finite-difference methods of analysis are the methods of variational 
calculus wherein dependent variables are expanded in truncated sequences of spatially 
dependent functionals (trial functions), the coefficients in the resulting series approxi- 
mations being extracted from simple integrations over the domain of interest followed 
by matrix inversion. An application [15] of this approach (often referred to as the 
Galerkin method) to the solution of thermally driven flow of a high Prandtl number 
Boussinesq fluid in a square 2-D cavity using beam functions was encouraging; 
however, the method tended to misrepresent more seriously the hydrodynamics of the 
problem than was the case for finite-difference solutions. 

The purpose of the present contribution is to report recent progress on the applica- 
tion of finite-difference methods to the solution of the Navier-Stokes equations at 
large Reynolds numbers. The physical situation is one of steady recirculating flow 
of a viscous fluid in a square 2-D cavity, motion being induced by transverse movement 
of the top plate. Stream function-vorticity forms of the governing laminar equations 
are solved by means of second-order-correct central-difference approximations 
applied in a transformed coordinate system. The resulting nonlinear algebraic 
problem is relaxed by means of AD1 methods using a nonuniform iteration parameter. 
Fully converged solutions at Reynolds numbers up to lo4 are generated in order to 
resolve basic questions on the nature of the flow and to explore convergence properties 
of the method. The question of whether the flow is laminar or turbulent at such high 
Reynolds numbers is addressed under Results and Discussion. 

ANALYSIS 

Governing Equations 

For shear-driven flow of a viscous fluid in a square cavity, the governing equations 
may be written as 

am -zz 
at 

- .-& (s W) + -$ (-$- W) + Re-’ V2w, 
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where +/ay = u, --&//ax = v, Re = LUjv, and false-transient terms are introduced 
as in Ref. [16]. For convenience in effecting more nearly optimal distributions of 
node points for the numerical solution, it being recognized that a greater density of 
nodes is desirable in the highly viscous boundary layer and secondary vortex (corner) 
regions than in the inviscid core, the governing equations are alternatively written in 
terms of coordinates 

and 

5 = 0.5{1 + tan[(2x - 1)/3]/tan /I} (3) 

7j = 0.5{1 + tan[(2y - 1)/3J/tan /?I. (4) 

x 
e 0.1 I I / 

0. 0 0.2 0.4 0. 6 0.8 1.0 
x or y 

FIG. I. Effect of coordinate transformation on node density distribution. 

The nodal compression factor &/dx (or d~/dy) is illustrated in Fig. 1, where it may 
be observed (by comparison with Fig. 5, shown later) that the gradients introduced 
by the transformation are mild compared to the gradients of vorticity encountered 
in the physical problem. With the transformation, Eqs. (1) and (2) become 

+ Re-l [s (-$- $-) + G (2 -$--)I (6) 

(5) 

where it is to be noted that the product 4,~~ of the metrics of the transformation has 
been absorbed in the false-transient terms. 

Boundary conditions for the problem are 



at 

and 

at 
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x=O,y=O,x=l; 

u=l,u=~=O (8) 

y = 1. 

Method of Solution 

The governing equations were solved via the method of false transients [16], 
approximating spatial derivatives in I/ and o in terms of three point central-difference 
analogs and relaxing the resulting nonlinear algebraic problem by means of ADI 
iteration. For (x, y) coordinates, the numerical algorithm takes the form 

and 

where 

and 

h-2dlCr,+,,, - $3 - &z’,h+m - &,‘,h - wk = W2), 

h-2ud#lc+l - $k+,,2) - &r#k+1/2 - D,,#k+l - wk = O@3 

h-2%(%+,,, - wk) + DdUk+10k+1/2) + DdUk+luk) 

- Re-l Dz+wk+l,z - Re-l &,wk = O(h2), 

h-2%h’k+, - wk+1/2) + D&k+Pk+u2 1 + D&k+Pk+I 1 

- Re-l DzcOk+i,2 - Re-l &,Wk+1 = O(h2), 

D,+ = [& + h, Y) - $<x - h, y)l/% 
&,b = [4(x + h, Y) - 2+(x, Y) + +(x - k y)llh2, 

etc., 

uti = hP/Ar, , cr, = ha/At, . 

(9) 

(10) 

(The notation dr, and At, has been introduced to indicate that the false-transient 
terms do not require that the pseudotime steps of the stream function/vorticity equa- 
tions be equal.) As usual, the indices k -+ k + ) -+ k + 1 denote one cycle of the 
AD1 iterative process. 
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Numerical evaluation of the vorticity at the walls intermediate between applica- 
tion of Eqs. (9) and (10) was effected in terms of the following alternatives: 

+ O(h), 
B 

(WB)k+l = - 
WB-I - +~--2 

2h2 (12) 

(WB)k+l = _ 21 h-l - WB-2 + 6s-3 

3h2 

where B, B - 1, etc., denote node points on the wall, one point in from the wall, 
etc.; n is measured perpendicular to the wall and outward from the center of the 
cavity; and (a#/&& = 1 at y = 1 and vanishes at the other surfaces. As discussed in 
Ref. [15], near-optimal relaxation of the nonlinear problem is obtained by damping 
wB via 

(%h+l = (l - uBB)k(WB)k + ‘%h3)k+l (14) 

with a, = 0.15. 
The numerical algorithm for the problem in (E, q) coordinates is similar in form; 

details are given in Ref. [17]. In either formulation, the overall method of solution 
involves the following sequential steps: 

(i) construct initial distributions of # and w; 

(ii) advance #-equation 1 cycle; 

(iii) advance wB , 

(iv) advance w-equation 1 cycle; 

(v) determine root-mean-square residuals (see Results and Discussion) 

(vi) repeat steps (ii)-(v) until convergence is obtained. 

(Actually, solutions were generated at sequences of Reynolds numbers, using con- 
verged solutions at a previous Reynolds ‘number as the initial condition for a sub- 
sequent Reynolds number.) 

Nonunifarm a; 

Numerical experiments with a constant a, applied uniformly over the domain 
revealed that high values of the parameter were required in order to stabilize the 
solution in regions of high vorticity gradients, but that these high ,palues of o, were 
overly restrictive in the central core region where changes, tended to occur very slowly, 
To speed the overall convergence of the numerical equations,. anonuriiform iteration 
parameter was postulated based on a von Neumann stability analysis whose details 
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are given in [17]. (Although the von Neumann method is not globally applicable for 
problems with variable coefficients and mixed boundary conditions, it has been 
shown [18, 191 that satisfactory results can be obtained on a local basis even when 
these conditions exist.) The essential features of the derivation are as follows. 

Substituting 

and 

into both parts of Eqs. (9) and (lo), but using the convective form of the latter to 
simplify the algebra, there result four equations which enable J&,~+~ and BP,a,k+I 
to be calculated given A,,,., and B,,,,x. Considerable algebraic complication can be 
avoided by assuming that terms of order S# * 6w are negligible and that wk + V2#, = 
0 (i.e., that the residual of Eq. (9) is much smaller than that of Eq. (10) in the regions 
of primary interest), after which a single (complex) equation for the amplification 
ratio, B ~,mr&w.~ > can be derived. Examining two limits of the equation, it develops 
that 

[a, - 4 sin2(.rrp)12 + [Re hui., sin(27rp)12 
[a, + 4 sin2(np)12 + [Re /zu~,~ sin(27rp)12 

x [a, - 4 sin2(.rrq)12 + [Re ht~,,~ sin(2rrq)12 
[a, + 4 sin2(7rq)]” + [Re /zu~,~ sin(2rq)12 (15) 

when the vorticity gradients are very small, attesting to the stability of the method in 
the invariant core (since the amplification ratio is less than unity); whereas 

Re h2[(~i+1.j - o~-~J) sin(2nP) - (w~,$+~ - wi,& sin(2rrq)] 2 
4a,[sin2(rrp) + sina( I 

(16) 

when the vorticity gradients are very large (and uU is also very large), illustrating 
the basic instability of such regions of the flow. In practice, it is possible to maintain 
stability by decreasing h and increasing u, , both of which tend to reduce the braced 
term in Eq. (16) and make it comparable with stabilizing terms that were deleted in 
deriving the limiting case. Based on the form of the braced term and considering its 
maximum over all ‘p and q, it was heuristically postulated that: a nearly optimal u, 
should be a function of Re h2(m,, - wmin), where wrnax and wmin are extreme 
values of o over the five-point “cell” involved in the second-order-correct differencing 
of Eqs. (1) and (2). Further quantification of uw was effected empirically; typical 
results are discussed below. 
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RESULTS AND DISCUSSION 

Convergence/Accuracy Considerations 

An objective of the present study was to develop improved computational methods 
for solving the equations of motion for 2-D recirculating flows at large Reynolds 
numbers. Owing to onerous coding requirements and/or excessive core-storage 
demands associated with many existing schemes, the scope of the study was limited 
to possibilities which emulate, for example, the basic simplicity of the method of 
false transients, employing simple difference analogs of the governing equations and 
relaxing the resulting nonlinear algebraic problem by means of, say, AD1 methods. 
Additionally, the trade-offs between computational efficiency and solution accuracy 
were to be established. 

In testing the computational efficiency of the overall method of solution, reliable 
criteria were needed to monitor errors along the iterative path owing to incomplete 
convergence of the dependent variables. For hydrodynamic problems of the type 
considered here, it is our experience that the most appropriate criteria are the so- 
called “root-mean-square residuals” (RMSR): 

RMSR, = 
i 
c (W + V’&/(N - 2)2 
iA 

RMSR, = 1 (Re-l V 2w - V - vw)&/(N - 2)2 
1 
lL2. 

i.j 

Utilization of these criteria in assessing the effects of variations on the basic method of 
solution is illustrated in Figs. 2-4. 

The effects of uniform vs. non-uniform a, on the approach to convergence of $ at 
the cavity center are displayed in Fig. 2, where the error of convergence is here defined 
as the relative difference between &, the value existing after the kth iterate, and 
z,/J~ , the value attained upon achievement of “steady state” (corresponding to the 
reasonable disappearance of all residuals). The given values of a, and a, were estab- 
lished empirically to yield near-optimal convergence rates. (Typically, convergence 
to “steady-state” occurred more slowly for nodes within the main vortex; in general, 
reduction of these convergence errors to <l % required that the RMSR’s be reduced 
to between 10-s and 1O-s. In practice, RMSR’s of less than 10”’ were attained before 
convergence was assumed.) Clearly, introduction of nonuniform 0,‘s can effect 
marked improvements in computational efficiency, particularly as the RMSR’s - 
0. Unfortunately, the advantage diminishes rapidly with increasing N, since 
W~max - w,r,J + 0 for all nodes points and the u,‘s approach a (near-optimal) 
uniform values (~2); for N > 8 1, very little improvement was observed. Nonetheless, 
the results were useful in guiding the development of the method of false transients 
in the (5, 7) plane. Referring to Eq. (6), it is seen that with 

h2 
q= 

= const, 
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i.e., 

there effectively are introduced relatively larger values of the AD1 iteration parameter 
in the near-well regions, since kJ,q, is a maximum in these regions. 

- ~&I -17 
--- NONUNIFORM%x 

-0 200 400 600 800 loal 
ITERATIONS 

FIG. 2. Effects of uniform versus nonuniform q,, on convergence rate: Re = 1600 -t 3200, 
N = 41, fl = 0, q, = 1, second-order-correct wB. 

Comparisons of the convergence behavior on solving the problem in (x, JJ) vs (6, q) 
coordinates, with values of N being selected such that the truncation errors for &, 
and wu are comparable, are displayed in Fig. 3. (Here truncation errors refer to the 
difference between the completely converged solution for a finite value of N and the 
“exact” solution corresponding to N -+ co, which is approximated by extrapolation 
procedures to be described later.) As would be expected, owing to the 2.5-fold reduc- 
tion in N, convergence is much more efficient for the (e, 7) formulation. 

The behavior of the convergence problem for (4,~) coordinates and nonuniform 
a, at Re = 104 is illustrated in Fig. 4 when the RMSR’s -+ 0. Whereas the RMSR’s + 
0 monotonically, the errors in & and wii decrease via damped oscillations. (Paren- 

SSI/33/3-4 
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thetically, it is relevant to note the nearly in-phase extrema in the convergence errors, 
in Fig. 4, which point up the risk involved in terminating a computation when the 
solution variables differ negligibly from one iterate to the next.) The behavior in 
Fig. 4 was typically encountered, in that “timewise” variations effectively disap- 
peared as the RMSR’s tended toward zero. 

0 400 800 ml 1200 
r-----r- ITERATIONS 
b CPU 40 

b 1;o &I 
CPUilBM 3W91 SEC1 

FIG. 3. Comparisons of computational efficiency using (x, y) versus (I, 7) formulations: errors 
owing to truncation n, 4 %. Re = 3200. 

In addition to convergence problems at large Re, it is well known [19] that central- 
difference analogs of the 2-D N-S equations can be subject to spurious spatial oscilla- 
tions associated with cell Reynolds numbers, Re h / u I and Re h I u I. As shown in 
Fig. 5, oscillations of this type did tend to occur for the Re = 104 case, but these 
anomolies were removed by suitable choices of N and /3. 

Another consideration in evaluating the credibility of finite-difference approaches 
for solving the N-S equations is the extent to which various conserved properties of 
the flow (vorticity, kinetic energy, square vorticity) are satisfied globally. In the present 
context, it may be shown [17] that conservation of these properties leads to the 
following integral constraints. 
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FIG. 4. 
4, 8, 17. 

0.06 

-0.06 
i 

0 4M) 84N 1200 16KJ 2000 

ITERATIONS 

Convergence behavior as RMSR’s - 0: Re = 104, N = 81, j3 

FIG. 5. Effect of parameter choice on spatial integrity, Re = l(r. 

+8- , , , , , , , , , 

+4 - 

L=T 
d 
d o- 
3 

-4 - 

-81 ’ I I ’ I I I I I 1 
0.0 0.2 0.4 0.6 0.8 1.0 

x 

Vorticity: 

rb Vw.odl =O; 
1 

kinetic energy: 

JJ a2 ds + 
f oV#.ndl=Q; 

s 2 

= 72”, og = 4, (Iw = 

(17) 

(18) 
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square vorticity: 

fs vo . VW ds - f wVw.ndl=O. (19) s 1 

The extent to which these integral constraints are satisfied for three well-known 
alternative formulations of the advective terms in the w equation 

(Qwz - ($4c4, (divergence), 

* UJ - $kwl/ (convective), 

iGh - (hzQJ),l + [$h4t! - 1cld4ll + KQWY - (+%hd>/3 

has been explored by solving the governing equations by means of the methods 
treated here. (Application of three-point central-difference approximations to the 
third expression results in Arakawa’s conservative scheme for the advictive terms.) 
Evaluation of Eqs. (17)-(19) was effected by means of trapezoidal quadrature, employ- 
ing discrete data from the converged numerical solutions. From an overall standpoint, 
the divergence formulation resulted in minimal errors in enforcing global conservation 
of the given properties, the Arakawa “conservative” scheme proving to be less 
satisfactory owing to problems in enforcing conservation at solid boundaries. As 
expected, the convective scheme proved least satisfactory as a result of rather large 
errors in conserving square vorticity. Further details appear in [17]. 

Of further interest is the effect of the order correctness of the vorticity boundary 
condition on the accuracy of the numerical solution. For N = 41 and fl = 0, with 
Re = 1000, the percent errors in #(0.5, 0.5) owing to truncation were -10.3, 7.0, 
and 6.4 on using first-, second-, and third-order-correct boundary conditions, 
respectively; while, those for ~(0.5, 0.5) were -9.3, -6.8, and -6.6. With increasing 
N, the error spread is, expectedly, reduced. 

Converged Solutions of the Governing Equations 

Numerical solutions of the governing equations were obtained at Reynolds 
numbers ranging from IO3 to 104. The basic data, consisting of 2-D arrays for #ii 
to six significant figures, has been preserved on cards for the “best” solution at each 
Re. 

The effects of increased Re on the basic structure of the recirculating flow are 
illustrated in Figs. 6 and 7, with numerical values of the more significant flow 
properties being given in Table I. The “exact” values at h -+ 0 were obtained by 
means of h” extrapolation, wherein solutions at three different mesh spacings, h, 
were used to establish the intercept, a, of a flow variable, 4, in the equation 4 = 
a + b . h”. Typically, values of n varied between 1.50 and 1.75 (see Fig. S), illustrating 
the influence of the singularities in the upper corners in reducing the effective order 
correctness of the solution procedure. 

Of particular interest is that the best obtained solutions for # and w in the center of 
the main vortex and w on the top plate at Re = 3200 and 10,000 are all within 1 % 
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Ijj FIELDS FOR Re =lO,Mx) 
t BASED ON 151 x 151, fi =64.2”1 

FIG. 6. Flow structure at Re = lo”: N = 151, ~3 = 64.2”. 

i FIELDS FOR Re = 1wO 
(BASEDON 101x101 UNIFORM SPACING) 

u-1 

FIG. 7. Flow structure at Re = 1Ok N = 101, fl = 0. 

of the corresponding values for h = 0 obtained by extrapolation, this high degree 
of accuracy being directly attributable to the resolution of the boundary layer regions 
afforded through the coordinate transformation. Also of interest are the trends in # 
and o at the center of the main vortex, where # apparently has attained an asymptotic 
value (-0.212) and w is approaching the asymptotic value -1.86, as estimated by 
extrapolating the Re = 103, 3.2 x 103, lo4 results to very large Reynolds numbers. 
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TOh;0 

< 0.1210 BEST SOLIJTION \M -151. P = 64.2'1 

J” 0.5 I.” 1.5 2.0 

1oM) h*,50 

FIG. 8. Illustration of truncation error determination for Re = 1O4. 

The latter result is very close to the analytical value (-1.886) calculated by Burggraf 
[2] in his application of Batchelor’s model [20], consisting of an inviscid core with 
uniform vorticity, coupled to boundary layer flows at the solid surfaces. As expected, 
the present results at large Re indeed establish a large central region of essentially 
constant vorticity; however, the existence of secondary vortices of modest strengths 
in the corners would, expectedly, yield a slightly different value of the asymptote for 
1 w 1 as Re --+ co. Other parameters of interest, such as centerline velocity distribution 
and vortex center location versus Re, are similar to previous results [2, 3, 81 and, 
therefore, are not shown here. 

Owing to mesh-size limitations, quantitative assessment of the detailed properties 
of the secondary vortices with increasing Re is slightly less satisfactory. Nonetheless, 
it is clear that the 1,4 values are approaching asymptotes; e.g., the value of $maX 
within the well-developed lower-right vortex at Re = lo4 (2.95 x 10-3) is near the 
estimated value at Re --f co (3 x 10-3). Furthermore, we confirm an earlier 
inference by Mallinson and deVah1 Davis [16] wherein the secondary vortex in the 
upper left corner is generated at a critical Reynolds number, estimated here to 
be ~1200. 

The persistence and, indeed, enlargement of the secondary vortices with increasing 
Reynolds number up to Re = lo4 is a feature of the present solutions that differs 
from other published results [3, 81, which were obtained by using a lower-order correct 
upwind difference scheme in connection with the convective form of the vorticity 
equation. As shown in Fig. 9, results obtained with the upwind-differenced-convective 
(UDC) scheme would lead to the conclusion that the secondary vortices begin to 
diminish at high enough Reynolds numbers and eventually disappear, whereas the 
present results, using a centrally-differenced-divergence (CDD) method, show no 
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FIG. 9. Comparisons of secondary vortex sizes as a function of Reynolds number. 

such inclination. The conflict occurs only for Re > 500 for the bottom upstream 
vortex and Re > 4000 for the bottom downstream vortex, which explains why 
Burggraf’s numerical results for Re d 400 are in agreement with both methods (see 
Fig. 9). 

Contrary to the idea that the secondary vortices disappear at high enough Re, the 
present results suggest that as Re -+ cc, the primary vortex becomes a centrally 
located increasingly circular region of constant vorticity, essentially circumscribed 
by the boundaries of the cavity. A series of counterrotating vortices occupies each 
of the lower corners, with the vertical and horizontal extents of the largest of these 
apparently approaching 0.5. (This picture of the flow structure in the stationary 
lower corners is in agreement with Moffatt’s analytically derived model of an infinite 
series of rapidly diminishing counterrotating vortices [21].) 

Experimentally, there is little data available for 2-D cavities at high Reynolds 
numbers; and that which is available has been questioned [4, lo]. The experiments of 
Pan and Acrivos [22] indicate a secondary vortex in the lower right (upstream) 
corner which decreases in size as Re increases beyond 500, in apparent disagreement 
with the present results. However, their experiments also imply that no secondary 
vortex exists in the lower left (downstream) corner up to Re = 2700 (their maximum 
value), which contradicts both the present results and all the previously referenced 
numerical studies. A possible explanation for this behavior, offered in [4, lo], is that 
the experimental apparatus was such as to introduce vertical components of velocity 
at the upper boundary, owing to the use of a circular drum to form the skiing upper 
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surface. Since the drum protruded into the cavity to about 17 % of the cavity depth, it 
was postulated that induced vertical velocities could have had an effect on the secon- 
dary vortices. It is pertinent that the earlier experiments of Mills [23], using a flat 
belt arrangement for the upper surface, indicated secondary vortices remaining in 
both the upstream and downstream lower corners at Re = 106. According to [4], 
however, both sets of experiments were likely subject to significant three-dimensional 
effects, making them inappropriate as standards for comparison with numerical 
solutions of the two-dimensional problem. 
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FIG. 10. Comparisons of mesh size effect on secondary vortex size. Re = 1W. 

In view of the differences in the results for CDD and UDC, as well as the available 
experimental data, it becomes important to examine the truncation errors in the 
regions of the secondary vortices to determine the extent to which these solutions 
depart from the “steady-state” solution of the differential equations, (1) and (2). 
Figure 10 shows that the sizes of all of the secondary vortices obtained by CDD in the 
present study have definitely attained limiting values (i.e., further reductions in h 
would provide no significant improvements); whereas, the bottom downstream vortex 
size obtained by UDC and reported in [8] is still highly influenced by node spacing 
for the ranges of h considered there. If much smaller mesh sizes were used in [8], 
one could surmise from Fig. 10 that the size of the vortex would become significantly 
larger. 

To explore the behavior of the truncation errors in both methods of solution, it 
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may be shown that the lowest-order errors for UDC evolve from the advective terms, 
are proportional to h, and are given by 

E 
h 

UDC = - 2 (I I 
3 azw 

- + / g / $) + O(h2), ay a.9 (20) 

whereas those for CDD (also evolving from the advective terms) are proportional 
to h2 and are given by 

E CDD=$[+(+--,-+($a) 

where, Eq. (21) includes the coordinate transformation to (4, 77). Using the best 
available finite-difference solution (CDD, iV = 151, /3 = 64.2”) to numerically 
determine appropriate derivatives at Re = 104, a comparison of EuDc and EcDD 
with the diffusion term Re-lV2m was made along the vertical line x = 0.075. (This line 
was chosen because of its nearness to the centers of the two left-side secondary vortices.) 
As shown in Fig. 11, the truncation errors accruing with the UDC method used in [8] 
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FIG. 11. Comparisons of CDD and UDC lowest-order advection truncation errors with vorticity 
diffusion term. Re = lOa, x = 0.075. 



NUMERICAL SOLUTIONS FOR 2-D FLOWS 351 

are as much as 25 times greater than the magnitude of the diffusion term and are 
always in the same direction; thus, they effectively decrease (in a nonuniform way) 
the apparent Reynolds number. On the other hand, the CDD errors in the present 
contribution do not exceed 0.4 times the diffusion term, and they occur equally in 
both directions relative to the diffusion term. Thus the differences in the secondary 
vortex patterns occurring in [S], as compared to the present study, are due to the fact 
that the truncation errors in [S] are approximately 60 times as great as those in the 
present study. (Parenthetically, if N = 151 had been used with UDC, the errors 
would still be as much as eight times the diffusion term, since EuDc is proportional 
to h.) 

As a final note, the use of laminar flow equations up to’ Re = 104 is predicated on 
the fact that there is no conclusive experimental evidence available for recirculating 
flow in a 2-D squar,e cavity to indicate that a transition to turbulence occurs at a 
lower Reynolds number. Clearly, it would be desirable for both experiments and 
flow stability analyses to be conducted to determine the critical Reynolds number for 
this geometry and flow situation. In any flow stability analysis, reliable solutions of 
the laminar flow equations will be required. 
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